

HFCC 2018 Bratislava

Product Launch: Low Power Solid-State Shortwave

Our Mission

Heritage of Excellence

1

BBBC BROWN BOVERI	ABB	な THOMSON-CSF	THALES	THOMSON	technicolor	
1937	1988	1993	2000	2006	2010	2012
Opening of the Broadcast division at BBC.	BBC and Asea merge to new ABB Group	ABB Infocom sold to Thomson-CSF	Thomson-CSF is renamed to Thales, the Broadcast Division to Thales Broadcast & Multimedia	Thales Broadcast & Multimedia is sold to Thomson	Thomson is renamed to Technicolor and the Broadcast Division to Thomson Broadcast	Thomson Broadcast is sold to an Investor Group and part of it is established as Ampegon

Term: Solid State

• Electrons are not flowing throug the vaccum gap. Electron gun Electron current flows only through solid semiconductor (transistor).

Shortwave Transmitter Range

1,5 kW - 25 kW solid state:

- Full Solid State class E amplifier, now heading to class A/B thanks to envelope tracking
- Up to 4 broadcast frequency bands with Class E and Wideband with class A/B
- Integrated DRM solution
- User-friendly control with touch screen UCS
- Full remote control facilities and interface
- Compact high quality and modular design
- Overall efficiency > 80%

100 kW - 500 kW tube based:

- Universal Control System UCS with touch
- New Tuning System and full remote control
- Simplified Measurement Acquisition System
- Data display, logging; analysis
- DRM integration
- Exceptional overall efficiency >70%

Modular power scaling

- Transmitter system is in four different power classes available Optional redundant setup and configuration available
 - 1.5 kW 6 kW

• 12 kW to 25 kW

Universal/Unified Control System UCS

- Touch screen monitor
- Dedicated FPGA based control systems
 - SW, ASM, PSM
- Real time signal processing and information
- State machine controller
 - Coordination and supervision
- Provides safety for operating staff
- Equipment protection
- Ensures simplicity of transmitter operation
 - Dedicated login levels
 - Remote control interfaces

Comparison: Solid state vs. tube based

Item	Tube	SSA	Comments
Carrier Power	100 kW-500 kW	1.5 kW to 25 kW	SSA limited by RF power. Needs combiners but still limited.
Voltage	10 kV to 20kV	400 V	SSA plug & play
Coverage	> 1000 km	< 1000 km	SSA good enough for most regional and national territories
Efficiency	> 70%	> 80%	Saves consumption: less power for the same coverage
Maintenance / after sales	Tube: consumable Not redundant	Semiconductor Redundant	SSA requires very low maintenance. Tubes are expensive. Transistors within days. Tubes : 4-6 months!!!
Installation & infrastructure	4 to 5 weeks	1 week	Services are much less costly with SSA.

Engineering/System Optimisation

η τχ	η _{Feeder}	η _{Antenna}	η Radiation	η _{Total}	
Modern TX: 75 to 80 % Older TX: 50 to 55 %	Best: 95 % Very Often: 70 %	Best: 98 % Very Often: 95 %	Perfect Design: 99 % With Shielding: 70 %	Best: ~ 70 % Very Often: ~ 25 %	

System Efficiency = $\eta_{\text{Transmitter}} \mathbf{X} \eta_{\text{Feeder}} \mathbf{X} \eta_{\text{Antenna}} \mathbf{X} \eta_{\text{Radiation}}$

Solid state amplifiers

Full Solid-State Class-E, A/B Amplifier Module

- Class-E : η >80% but limited to 10 MHz: 1st generation. Only 4 freq. bands Modern Class A/B η >70%, covers all SW range: 3 to 26 MHz. 2nd generation: Wideband
- Modern class A/B amplis efficient thanks to Enveloppe tracking
- Reliable and robust design
- Direct modulated RF and AF digitally controlled
- Fast measurement and supervision on board
- Embedded interface for control and monitoring
- Future aim is 50 kW

Linear RF Amplifier : e.g. Class A

Key Characteristics:

- Small RF input signal, large RF output signal
- Can **amplify** any kind of modulation (Quality depends on linearity)

Output of an Amplifier

• Usable amplifier. Output filters-harmonics elimination-Distortions thanks to amplifier linearity.

Audio Quality measurement

 Excellent Audio level within 10 kHz bandwidth. Linear response

 Excellent THD+N Audio distortion and Noise figure

Future of SW Digital transmission

- Gradually traditional SW Radio broadcasting is being replaced with FM broadcast technologies. Thanks to DRM, new SW applications and opportunities are possible.
- This is freeing up bandwidth in the SW spectrum and providing opportunities for others (other applications).
- Digital DRM radio has the potential to further compress channels and over very large distances up to thousands of miles with minimal costs.
- To transmit the same amount of information, DRM saves about 60% of the electricity bill. It consumes much less energy than analog transmission to cover the target area and with much higher quality.
- Shortwave offers incredible potential as a communication medium, but what could we do with it?

Strengths of Shortwave

- Voice of Nigeria
 500 kW/Abuja-Target Europe
- SW can propogate over intercontinental distances.
- Broadcaster can be remote from infinite numbers of receivers
- Minimal infrastructure required+Min. Costs
- Immediate data transmission: .20W Extremely fast transmission .30W

Strengths of Shortwave

Shortwave Band Chart					
BAND	MEGAHERTZ (MHz)	KILOHERTZ (KHz)			
120 m	2.300-2.500 MHz	2300- 2500 KHz			
90 m	3.20-3.40 MHz	3200- 3400 KHz			
75 m	3.90-4.00 MHz	3900- 4000 KHz			
60 m	4.750-5.060 MHz	4750- 5060 KHz			
49 m	5.950-6.20 MHz	5950- 6200 KHz			
41 m	7.10-7.60 MHz	7100- 7600 KHz			
31 m	9.20-9.90 MHz	9500- 9900 KHz			
25 m	11.600-12.200 MHz	11600-12100 KHz			
22 m	13.570-13.870 MHz	13570-13870 KHz			
19 m	15.10-15.80 MHz	15100-15800 KHz			
16 m	17.480-17.90 MHz	17480-17900 KHz			
13 m	21.450-21.850 MHz	21450-21850 KHz			
11 m	25.60-26.10 MHz	25600-26100 KHz			

- Zero fixed infrastructure required for receiver network.
- Broadcasts are freely available to hundreds / thousands / millions of undefined, mobile locations.

- Hundreds of channels with 9/10 kHz bandwidth.
- Future possibility of double bands for increased data rate? Transmitters are capable of double band broadcast.

Coverage area comparison FM vs DRM30

100kW SW or MW: DRM is compressed to get an ~ FM quality: 32 kbits /s

1 Transmitter

40kW @ 80% efficiency Digital error correction

Min. 15 FM Transmitters

150kW @ 60% efficiency

Digital SW coverage study: Myanmar: 10 kW Tx

Rapid Intercontinental Data Communication

- Transport
- Education
- Radio programs
- Military

Rapid Intercontinental Data Communication (1/4)

- 1965 present
- Technology: Satellite communication
- Typical Message Transmission time: 250ms (+ signal processing)
- Application: High bandwidth TV and data
- Limitations: Expensive bandwidth, orbital distance limits speed

Rapid Intercontinental Data Communication (2/4)

- 1988 present
- Technology: Fibre-optic cable
- Typical Message Transmission time: 60ms 100ms (+infrastructure delay)
- Application: Speech, TV and high bandwidth data
- Limitations: Repeaters, data security

Rapid Intercontinental Data Communication (4/4)

- 2016 ?
- Technology: Digital SW transmission
- Typical Message Transmission time: <20ms (+ signal processing)
- Application: Encoded digital data
- Advantages: High speed, secure, digital error correction possible

Automotive communications

• Shortwave's strengths: Existing technology allows broadcast to wide ranging, dispersed, mobile targets, without fixed infrastructure.

- A single large transmitter with an appropriate antenna could broadcast high quality digital audio and data to every car travelling in an entire country or continent! Software updates can cost billions!
- A simple SW message could do it within minutes for every single car within the broadcast footprint.

Built-In Car Receivers (examples)

Automotive Communication

- Even in large cities, a good antenna with the smallest SW transmitter would cover every vehicle within 20 miles and more
- Using PACTOR IV mode data compression, 1MB software update can be transmitted in about 3min.
- Error correction means that after perhaps 3-6min, the update could be received and installed.

 Following the Diesel Emissions Scandal of 2015/16, VW set aside €6.8bn to recall cars. Of 8.5M vehicles in Europe needing to be recalled, the majority of these ONLY needed to update engine management software!

Automotive SW antennas

• Cars have had passive antennas inside rear windows for decades! The antenna is also the window heater!

Small SW Transmitter can be mobile for Sites?

Summary of Opportunities

New digital shortwave technology is fast approaching for digital data applications with:

- Requirements for rapid data transmission with min. Investment costs
- Receivers without fixed
 infrastructure
- Expensive third-party data connections are avoided
- Enormous numbers of targets
- Regional, national or even continental coverage
- The potential for profitable business in this field is enormous! What could **YOU** use it for?

Worldwide Broadcast Systems References

Selection of Consortium Members

• The non-profit DRM Consortium supports and promotes the DRM Standard and it takes up globally.

DRM Transmission Schedules Online

TIME IN UTC/GMT	BROADCASTER	FREQ in kHz	DAYS	LANGUAGE	TARGET	TRANSMITTING SITE	Power kW	Antenna beam degrees
TO EUROPE								
0100-0057	Radio France International	3965	Daily	French	France	France, Issoudun	1	Non Directional
0559-0700	BBC World Service	3955	Daily	English	NW Europe	UK, Woofferton	100	114
0500-0530	Radio Romania International	7330	Daily	French	W. Europe	Romania, Galbeni	90	285
0530-0600	Radio Romania International	7330	Daily	English	W.Europe	Romania, Tiganesti	90	307
0600-0630	Radio Romania International	7330	Daily	German	W.Europe	Romania, Tiganesti	90	307
0900-1200	Radio France International	б175 occasional tests	Daily	French	Europe + N.Africa	France, Issoudun	100 + 100	153 + 267
0945-1325	Radio Kuwait	15110	Daily	Arabic	Europe	Kuwait, Sulaibiyah	200	310
1000-1700	WINB	11670	Mon-Fri	English and Spanish	Europe	USA, Red Lion, PA	15	62
1700-1800	Radio Romania International	9760	Daily	English	W.Europe	Romania, Tiganesti	90	307
1800-2000	Voice of Nigeria	15120 suspended for maintenance	Daily	English	W.Europe	Nigeria, Abuja Lugbe	250	7
1800-2100	Radio Kuwait	15540	Daily	English	W.Europe	Kuwait, Sulaibiyah	200	310
1800-1830	Radio Romania International	5910	Daily	Italian	Italy	Romania, Saftica	90	270
1800-1900	Radio Romania International	6090	Daily	German	Germany	Romania, Tiganesti	90	307
2000-2030	Radio Romania International	9535	Daily	French	France	Romania, Galbeni	90	285
2030-2100	Radio Romania International	9535	Daily	English	W.Europe	Romania, Galbeni	90	300

Thank you!

Broadcast